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ABSTRACT

Supervised learning has been used to solve monaural speech
enhancement problem, offering state-of-the-art performance.
However, clean training data is difficult or expensive to ob-
tain in real room environments, which limits the training of
supervised learning-based methods. In addition, mismatch
conditions e.g., noises in the testing stages may be unseen
in the training stage, present a common challenge. In this
paper, we propose a self-supervised learning-based monau-
ral speech enhancement method, using two autoencoders
i.e., the speech autoencoder (SAE) and mixture autoencoder
(MAE), with a shared layer, which help to mitigate mis-
match conditions by learning a shared latent space between
speech and mixture. To further improve the enhancement
performance, we also propose phase-aware training and
multi-resolution spectral losses. The latent representations
of the amplitude and phase are independently learned in two
decoders of the proposed SAE with only a very limited set
of clean speech signals. Moreover, multi-resolution spectral
losses help extract rich feature information. Experimental
results on a benchmark dataset demonstrate that the pro-
posed method outperforms the state-of-the-art self-supervised
and supervised approaches. The source code is available at
https://github.com/Yukino-3/Complex-SSL-SE.1

Index Terms— monaural speech enhancement, self-
supervised learning, multi-resolution spectral losses, phase-
aware, joint training

1. INTRODUCTION

Monaural speech enhancement has attracted considerable re-
search attention and deep learning techniques have signifi-
cantly improved its performance with a supervised learning
(SL) strategy [1, 2, 3, 4]. However, supervised training of the
networks requires large sets of labelled paired data. More-
over, a trained model may suffer from performance degra-
dation when deployed in previously unseen conditions e.g.,
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a mismatch of room environments between the training and
testing sets. To address the above limitations, self-supervised
learning (SSL) techniques are applied as an effective alterna-
tive for monaural speech enhancement [5, 6, 7, 8].

The first SSL-based speech enhancement (SSE) method is
proposed by Wang et al. [6], where an autoencoder is used to
learn a latent representation of clean speech signals as the pre-
task, and another autoencoder is used to learn the shared rep-
resentation between the clean speech and its mixtures. How-
ever, the SSE method only learns a shared latent space with
unseen speakers [6], its generalization ability to unseen noises
and room environments is still limited. Moreover, the phase
information of speech signals is ignored in [6]. To address
the limitations in [6], we propose a joint training algorithm to
improve the speech enhancement performance by using two
autoencoders, namely, the speech autoencoder (SAE) and the
mixture autoencoder (MAE). The SAE is trained with clean
speech signals to learn their latent representations with the
amplitude and phase information processed with two indi-
vidual decoders. The MAE is trained with noisy mixtures
recorded in real room environments, where a shared layer
from the SAE and MAE is used to obtain a joint latent space
of the learned clean speech and noisy mixture representations.
The last layer of the encoder in the MAE is replaced by the
one in the shared layer after the training stage is completed.
To improve the generalization ability of the network model,
the training data used for the MAE is unseen in the training
data (i.e. unseen room environments) used for the SAE, which
helps to train the shared layer to address the mismatch condi-
tions between the training and testing stages.

2. PROPOSED METHOD

2.1. Network Architecture

The block diagram of the proposed method is shown in Fig. 1.
Initially, multi-resolution features are extracted from the spec-
tra S i.e., the input of the SAE. In order to preserve the desired
information in the signal, in the encoder named ES , each con-
volutional layer generates the feature map of a specific resolu-
tion, which is then scaled to produce the latent representation



Fig. 1. The overall architecture of the proposed method. (a) Training: From speech spectra S, the multi-resolution features are
extracted with different window sizes as the input of ES . Then, the latent representation of the speech feature ZS is learned
via ES . Then, the reconstructed amplitude and phase of clean spectra are independently obtained as the output by using DS,A

and DS,P . Similarly, from unseen noisy mixture M, the multi-resolution features are extracted as the input of the EM and the
mixture feature map ZM is learned. Meanwhile, a shared latent space between ZS and ZM improves the generalization ability
of the MAE. (b) Testing: Multi-resolution mixture spectra M which are unseen with M in (a) are fed into the trained EM . The
enhanced signal Ŝ is obtained with the estimate spectrogram from the speech recovery module.

ZS with multi-resolutions. The optimal weights for combin-
ing the spectra with each resolution are learned with the target
i.e., the feature map of the clean speech, during the training
of ES .

In the proposed method, two decoders DS,A and DS,P are
applied in SAE to learn the amplitude and phase of speech,
respectively. In detail, the latent representations of both the
amplitude and phase are learned by minimizing the discrep-
ancy between the input representation and the corresponding
reconstruction. The multi-resolution spectra of the estimated
speech signals are obtained.

Different from the SAE, the MAE only requires access
to unseen noisy mixtures M. The multi-resolution features
are extracted from the noisy mixture and fed to EM . Con-
sequently, the latent representation of the mixture is obtained
as the output of EM and exploited to modify the loss func-
tions. Then, the speech feature representation ZS and mix-
ture representation ZM are used to learn a cross-domain la-
tent space. To achieve that, we concatenate the last layer from
both ES and EM and create the shared layer between two au-
toencoders. The mixture representation is passed through the
decoders of the SAE to get the enhanced version of the mix-
ture representation. Benefiting from the learned speech rep-
resentation, a mapping relationship from the mixture to the
target speech is learned through DS,A and DS,P . The shared
latent space between the SAE and MAE is used to further
learn the latent representation of the unseen mixture spectra.
The last layer of EM is replaced by the one in the shared layer

after the training stage is completed.
In the testing stage, the feature of the noisy mixture is

extracted and fed into the trained EM to obtain the latent rep-
resentation of the mixture feature. This representation is then
used with the decoders DS,A, and DS,P to decode the esti-
mated amplitude and phase of the target speech spectra, re-
spectively. Finally, in the speech recovery module, the phase
is recovered by re-wrapping the estimated unwrapped phase
of speech. Then, it is used with the recovered speech ampli-
tude to reconstruct the estimated speech signal.

2.2. Loss Functions

Different from previous SSL methods [6, 7, 8, 9, 10], the
proposed method exploits multi-resolution feature maps for
the network training. Inspired by [11], we use the multi-
resolution STFT loss as an auxiliary loss to improve the
stability and efficiency for model training. The feature map is
rescaled with the same frame shift (i.e. 32), but with different
window sizes (1024, 512, 256, and 128). Each STFT loss
term estimates the frame-level difference between the clean
speech spectrogram and the corresponding reconstructed
speech spectrogram.

For the SAE training, the loss LS is the sum of four multi-
resolution losses defined on amplitude and phase between the
clean speech feature and the reconstructed speech feature as:

LS =

I∑
i=1

(∥Si
a − Ŝi

a∥22 + ∥Si
p − Ŝi

p∥22) (1)



where i refers to the index of the multi-resolution feature
maps, subscripts a and p denote the amplitude and phase,
respectively. Once the loss function is minimized, we now
use the trained SAE and noisy mixtures to train the MAE.
The loss LM denotes the sum of the multi-resolution losses
between the noisy mixture feature and the corresponding re-
construction as:

LM =

I∑
i=1

(∥Mi − M̂i∥22) (2)

Then, the shared layer between the two autoencoders is used
to learn a shared latent representation to mitigate the mis-
match between the training and testing conditions. To achieve
this, the amplitude and phase of Zi

M are enhanced by the
trained DS,A and DS,P , respectively. Then, the amplitude
and phase of the enhanced spectra are mapped back by ES to
produce the estimated mixture representation Ẑi

M. The over-
all MAE loss with the hyper-parameter λ is given as:

LMAE = LM + λ ·
I∑

i=1

∥∥∥Zi
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M
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(3)

3. EXPERIMENTAL RESULTS

3.1. Datasets

The Device And Produced Speech (DAPS) dataset [12] is
used in these experiments as [6]. The noisy data consists of
20 speakers (10 female and 10 male) each reading out 5 story
excerpts in indoor environments with different real room im-
pulse responses (RIRs). In addition, the clean raw data are
collected in an acoustically treated low noise, low reflection
vocal booth of a professional recording studio using a micro-
phone with a flat frequency response [12]. Most non-speech
sounds such as breaths and lip smacks were removed from the
recordings by the sound engineer to create clean speech [12].
We cut 14 minutes of data from each speaker into 28 clips
where each clip has 30 seconds long. To show the generaliza-
tion ability of the proposed SSL method, we split utterances
from different speakers in the data preprocessing stage. In
the training stage, 420 clean utterances from 15 speakers are
randomly selected. For each environment, we first randomly
select 28 utterances from a speaker to generate the training
data for the SAE. To train the MAE, 392 utterances from 14
speakers are used to generate the mixtures with three differ-
ent background noises (factory, babble, and cafe) from the
NOISEX dataset [13] with four SNR levels (-10, -5, 0, and 5
dB). Therefore, the data used for training MAE is unseen in
the data used for training SAE. Moreover, in the testing stage,
the remaining 140 utterances of 5 speakers, which are unseen
from those in the training stage, are used to generate the mix-
tures with the same SNR levels but different background noise
types and room environments as those in the training stage.

3.2. Experimental Setup and Performance Metrics

Similar to [6, 14, 15], the proposed autoencoders use vari-
ational autoencoders (VAEs) as the backbone. In the SAE,
ES , DS,A, and DS,P all consist of four 1-D convolutional
layers. In the MAE, EM , DM,A, and DM,P all consist of six
1-D convolutional layers. The proposed method is trained by
using the Adam optimizer with a learning rate of 0.001 and
batch size of 20. The coefficient λ is used in (3) to constraint
loss terms and is set empirically with different experiments.
For most of the experiments, it is set to 0.01 according to
the grid search results by using 0.001, 0.01, 0.1, 1, and 10
as options for the parameter values. However, it is set to 0.1
because the latent representation loss plays a more important
role in some specific experiments. The number of training
epochs is 700 and 1500 for SAE and MAE, respectively.

Similar to [6], we use composite metrics that approximate
the Mean Opinion Score (MOS) including COVL, i.e. the
MOS predictor of overall signal quality, CBAK, i.e. the MOS
predictor of background-noise intrusiveness, CSIG, i.e. the
MOS predictor of signal distortion [16], and Perceptual Eval-
uation of Speech Quality (PESQ). Higher values of these per-
formance metrics imply better enhancement performance.

3.3. Comparisons with SSL Methods

In this section, we compare the proposed method with three
state-of-the-art SSL speech enhancement approaches [6, 7, 8].
The first method is SSE [6] which exploits two autoencoders
to estimate speech and mixture, respectively. The second
method is the pre-training vector quantization method (PT-
VQ) [7], which combines WavLM [17] and Transformer en-
coder. The third method applies a cross-domain feature (CF)
which integrates the SSL representation and spectrogram [8].
This baseline consists of 2 linear layers, two-layered bidirec-
tional long short-term memory (BLSTM) of 256 hidden units
and a sigmoid activation to generate the prediction mask. Ta-
ble 1 shows the speech enhancement performance with PESQ,
CSIG, CBAK, and COVL at different SNR levels.

It can be seen from Table 1 that the proposed method out-
performs the state-of-the-art SSL methods in terms of all four
performance measures. The proposed method and baselines
are also compared at different SNR levels. From the experi-
mental results, it can be seen that the proposed method out-
performs the baselines even at a relatively low SNR level i.e.,
-5 dB. The proposed method has 7.6%, 7.0%, 7.8%, and 7.4%
improvements compared with the CF method in terms of four
performance measures at -5 dB SNR level.

3.4. Comparisons with SL Methods

In this section, we further compare the proposed method
with state-of-the-art SL approaches [1, 2, 4]. The DBT-Net
aims to recover the coarse- and fine-grained regions of the
overall spectrogram in parallel [2]. An attention-in-attention



Table 1. Comparison with SSL methods. Each result is the average value of 1,260 (140 signals×3noise types×3 room envi-
ronments) experiments. Italic shows the proposed methods. Bold indicates the best results.

PESQ CSIG CBAK COVL
SNR (dB) -5 0 5 -5 0 5 -5 0 5 -5 0 5
SSE [6] 1.32 1.33 1.34 1.97 2.04 2.09 1.74 1.76 1.77 1.59 1.65 1.68

PT-VQ [7] 1.68 1.70 1.71 2.24 2.27 2.29 1.76 1.79 1.80 1.72 1.77 1.81
CF [8] 1.71 1.74 1.77 2.29 2.30 2.35 1.80 1.89 1.96 1.76 1.80 1.86

Proposed 1.84 1.89 1.91 2.45 2.47 2.49 1.94 2.10 2.23 1.89 1.96 2.03

transformer-based network is adopted for better feature learn-
ing. The second method is frequency recurrent convolutional
recurrent network (FRCRN) which boosts feature map along
the frequency axis [4]. Moreover, in the spectrogram de-
composition (SD) method, feature maps are composed of
spectra containing evident speech components according to
the mask value [1]. These feature maps make the boundary
information of speech components clear by ignoring others,
thus boosting the sensitivity of the model to input features.
Table 2 shows the speech enhancement performance with
PESQ, CSIG, CBAK, and COVL.

Table 2. Comparison with SL methods. Each result is the
average value of 3,780 experiments (140 signals×3 noise
types×3 room environments×3 SNR levels). Italic shows the
proposed methods. Bold indicates the best results.

PESQ CSIG CBAK COVL
SD [1] 1.68 2.21 1.72 1.66

DBT-Net [2] 1.69 2.21 1.76 1.68
FRCRN [4] 1.72 2.25 1.83 1.74
Proposed 1.88 2.47 2.09 1.96

These SL methods are originally trained with large
datasets e.g., VoiceBank [18] and DEMAND datasets [19]
which contain 11,572 utterances in [2]. However, in these
comparison experiments, we use only 420 utterances in the
DAPS dataset to train all the methods because the clean
speech data is difficult or expensive to obtain in real-world
scenarios, e.g., talking in an office. The training of the
supervised methods strongly relies on the large-scale data
to facilitate the model to learn structural information [20].
Therefore, the speech enhancement performance of super-
vised methods suffers from significant degradation compared
with its original implementation. In addition, different from
the original implementation [2, 4, 1], unseen speakers, noises,
and room environments are also used to generate noisy mix-
tures in the testing stage, which leads to a further drop in the
reproduced performance results. In this work, the proposed
method uses the shared layer to learn a joint latent space be-
tween the SAE and MAE in unseen cases. Thus, the speech
enhancement performance is improved although the model is
tested in unseen cases.

3.5. Ablation Study

In this section, we investigate the effectiveness of each contri-
bution. Table 3 shows the speech enhancement performance
with PESQ, CSIG, CBAK, and COVL.

Table 3. Ablation study of the three contributions in
the proposed method. Each result is the average value
of 3,780 experiments (140 signals×3 noise types×3 room
environments×3 SNR levels). The shared layer and multi-
resolution are abbreviated as S-L and M-R, respectively.

Ablation Settings PESQ CSIG CBAK COVLPhase S-L M-R
✗ ✗ ✗ 1.33 2.03 1.76 1.64
✓ ✗ ✗ 1.43 2.15 1.83 1.68
✗ ✓ ✗ 1.59 2.26 1.98 1.81
✗ ✗ ✓ 1.39 2.10 1.79 1.65

From Table 3, it can be observed that the performance is
improved by each contribution among all four performance
metrics. The improvement of the proposed shared layer is
more significant than the use of the phase-aware and multi-
resolution spectral losses. Because the shared latent space
between the two autoencoders is learned at the last layers of
ES and EM , the speech signal can be estimated from unseen
noisy mixtures using a network that is trainable without la-
belled training data.

4. CONCLUSION

In this paper, we have presented a self-supervised learning
based method with complex spectra and limited training data
to address the monaural speech enhancement problem. The
cross-domain latent representation for unseen noisy mixtures
was learned by using the proposed shared layer. To fur-
ther improve the generalization ability, we proposed phase-
aware decoders and multi-resolution spectral losses based on
the multi-resolution feature maps. The experimental results
showed that the proposed method outperformed the state-of-
the-art approaches in a challenging case where the speakers,
background noises, and room environments are unseen in
the testing stage. Furthermore, the relationship between the
amplitude and phase may be relevant to future studies.
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